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Abstract— Developing a robust dynamic walking controller
for bipedal robots remains challenging as the system is hybrid,
highly nonlinear, and strongly restricted. The typical two-level
structure of high-level footstep planning and low-level whole-
body control has been proven an effective approach for bipedal
locomotion. However, practical guidance on its implementation
is rarely covered fully in detail. To bridge this gap, this
paper presents a detailed implementation of such controller
for dynamic walking applications on a miniature bipedal robot
with proprioceptive actuation. To the best of our knowledge,
this is the first fully-untethered miniature bipedal robot which
can achieve robust dynamic walking using this framework. In
particular, the high-level planner determines both the location
and duration for the next few steps based on the divergent
component of motion. The low-level controller leverages the full-
body dynamics to establish the foot contact as planned while
regulating other task-space behaviors, e.g., center of mass height
and torso orientation. Both problems are formulated as small-
scale quadratic programs, which can be solved efficiently with
guaranteed optimality for real-time execution. Extensive results
of simulation and hardware walking experiments are provided
to demonstrate the strong robustness of the approach under
various disturbances and uncertainties, e.g., external pushes
and irregular terrains.

I. INTRODUCTION

Bipedal locomotion has been studied for decades and yet
it remains an active research field. Besides the great demand
for a reliable hardware platform, various challenges emerge
in developing an efficient control algorithm, e.g., the complex
robot model and strict real-time requirements.

In the presence of strong perturbations, when the ankle [1]
and hip [2] strategies are no more effective, it is necessary
to take recovery steps to avoid falling. While linear feedback
control [3] or simple heuristic [4] works for small footstep
adjustment, a real-time trajectory optimization (TO) scheme
outperforms them with the consideration of a time pre-
diction horizon and various physical constraints. However,
TO-based approaches heavily depend on system models of
the process. Because of the complexity of bipedal robots,
e.g., hybrid dynamics, high nonlinearity, strong restrictions,
and considerable degrees of freedom (DoF), solving the
problem holistically is extremely challenging even offline,
i.e., optimizing over contact schedule and contact forces
simultaneously with the full-order model [5], [6].

To date, most successful online locomotion control strate-
gies break down the problem into multiple stages and sim-
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Fig. 1. Snapshots (from left to right) of BRUCE taking recovery steps
after its torso was pushed to the right.

plify the robot model according to the use of each stage,
sacrificing the global optimality while achieving the real-
time execution [7]–[9]. A practical paradigm is to have a
two-level structure [10]–[14], where the high level plans the
footsteps while the low level establishes the foot contact at
the desired time and location.

The linear inverted pendulum model (LIPM) [15] is widely
adopted for the high-level footstep planning, which captures
the most salient aspect of the system dynamics, i.e., center
of mass (CoM). Considering piecewise constant CoM jerk
as input, the LIPM dynamics can be discretized as cubic
polynomials. The footstep locations can then be solved
through TO in real time, which can be transcribed into a
quadratic program (QP), minimizing the overall jerks while
restricting the center of pressure (CoP) within the support
polygon [16], [17]. Assuming invariant CoP coincident with
the footstep location, the LIPM dynamics can be analytically
integrated so that the intermediate process can be omitted
and thus only an order of magnitude less decision variables
are involved in the QP [8], [10]. Nevertheless, in all these
strategies, step duration is always fixed to maintain the
convexity of the TO problem. Notably, the LIPM dynamics
can be decomposed into two parts, one is stable and the other
is unstable, and controlling only the unstable part, i.e., the
so-called divergent component of motion (DCM), is enough
to generate stable walking [18], [19]. Unlike the full CoM
states including both position and velocity, the DCM follows
a first-order dynamics, which helps simplify other aspects of
locomotion analysis and control. Based on the DCM, both
location and timing of the next footstep can be adapted using
a QP-based TO formulation [12], [14].

For simultaneous execution of multiple tasks in the low
level, whole-body control (WBC) is a good candidate which
exploits the full capabilities of the entire body of redundant,
floating-based robots interacting with the environment. In ad-
dition, it is able to realize fast, agile, and compliant motions
yet without sacrificing accuracy. Previous approaches [20],



[21] use inverse dynamics (ID) but consider trajectories in
joint space, resulting in an incredible amount of required
motion details. By contrast, task-space control [22], [23]
eases this burden by designing trajectories in the intuitive
task space. However, for all these methods, contact stability
and torque limits are not properly handled, the violation of
which can easily cause poor performance or even control
failure. Lately, an elegant way to implement WBC is using
optimization, mostly QP, which is able to account for system
dynamics, map between the task space and joint space, as
well as satisfy various constraints concurrently. Depending
on how the task hierarchy is managed, QP-based WBC can
be mainly categorized into two types. A weighted WBC
scheme sets all operational tasks as objectives of a single
QP with priorities implicitly being enforced with weights [7],
[11]. A strictly hierarchical framework solves cascaded QPs
from the highest priority to the lowest, where the subsequent
QP is carried out with additional constraints to preserve the
optimality of the previous one [24], [25].

II. MOTIVATION & CONTRIBUTION

Comparatively slower development in bipedal robots than
quadruped robots in terms of dynamic behaviors is being
noticeable. Besides the limited accessibility to reliable hard-
ware, one of the main reasons is that bipedal robots impose a
serious challenge on developing dynamic motion controllers
due to the required real-time coordination of multiple tasks
in a complex, high-dimensional state space. The two-level
structure described in Section I for locomotion purpose has
been proven an effective approach for many bipedal robots,
e.g., Atlas [11], Cassie [13], and Sarcos [14]. However,
practical guidance on implementation of such framework is
rarely covered fully in detail or out of date [26], [27]. We
believe that complete discussions on implementation details,
including but not limited to parameter selection experience
and matters needing attention, are also valuable to promote
research on dynamic behaviors of bipedal robots.

Meanwhile, investigation on the performance of the state-
of-the-art bipedal control strategy for platforms in different
scales, e.g. full-size and miniature bipedal robots, is not
done yet. Differences between them may put new challenges
on both control algorithms and hardware design principle.
One of the obvious differences is the lower CoM height of
miniature bipedal robots, which will lead to higher natural
frequency and quicker diverging speed. As for dynamic walk-
ing applications, step duration must be reduced accordingly
to catch the fall in time but too fast swing trajectories may
degenerate the tracking performance.

We presents this paper to discuss similar issues for im-
plementation of a two-level dynamic walking controller on
a miniature bipedal robot. The high-level footstep planner is
based on the DCM where both the step location and timing
can be optimized for stronger robustness. The low-level
WBC is using a weighted QP scheme in consideration of
computational cost despite sacrificing the strict task priority.
Fig. 2 shows the block diagram for the entire system.
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Fig. 2. BRUCE system overview. The robot is designed to be fully
untethered, powered by a LiPo battery, controlled by a mini PC, and
equipped with a wireless E-Stop. The state estimator uses a complementary
filter that fuses information from the onboard IMU (acceleration a and
angular rate ω), the joint encoders (position q and velocity q̇), and the
sensing feet (boolean contact states d). Given the current robot states
and desired references, the high-level footstep planner determines the next
footstep location p∗

1 and step duration T ∗ while the low-level WBC
calculates the desired joint torques τdes.

III. SYSTEM OVERVIEW

A. Bipedal Robot Unit with Compliance Enhanced

Bipedal Robot Unit with Compliance Enhanced (BRUCE)
[28] is a low-cost miniature bipedal robotic platform for
dynamic behaviors. BRUCE has a total height of 660 mm
adapting an average human body proportion. It is composed
of a torso and two five-DoF legs. Each leg of BRUCE has a
spherical hip joint, a single DoF knee joint, and a single DoF
ankle joint. Accordingly, each foot has a line contact with the
ground. To have better torque transparency and compliance
to the unknown environment, proprioceptive actuation is
equipped for each joint, using the BEAR actuators [29]
from Westwood Robotics [30]. Moreover, BRUCE’s legs are
designed to have low inertia for performing highly dynamic
motions. A two-DoF parallel actuation configuration realized
by a cable-driven differential pulley system is applied to the
hip joint to reduce the mass and inertia of the femur link.
Meanwhile, two pairs of four-bar linkage mechanisms are
used to relocate the ankle actuator to the femur link for the
light weight of the tibia link.

To have a convenient hardware setup for walking exper-
iments, it is desired to make BRUCE fully untethered. All
the electronics are directly mounted onto the torso for easy
installation and better weight distribution. A mini PC with an
Intel Core i5-7260U Dual-Core CPU at 2.2 GHz is utilized as
the onboard computing resource. A 14.8 V 2200 mAh LiPo
battery is used to power the whole system with a running
time of approximately 20 minutes. For the sake of safety
during operation, a wireless E-Stop built in-house is mounted
onboard as well to cut the power in emergencies. In total,
BRUCE has a net weight of 5.2 kg.

To ensure reliable ground contact information for walking
purpose, we modified the design of the sensing foot. Pre-
viously, BRUCE used a two-layer structure to mimic the
working principle of an electronic switch [28]. However,
the plastic contact layer can break from time to time due



to touchdown impact. In addition, dust can easily stick to
the copper foils, which affects their contact quality. The
new design of the sensing foot has a tactile switch directly
inserted into the rubber contact layer. In this way, the foot
touchdown is more compliant and the contact detection
mechanism is fully isolated from the outside environment,
which greatly improves the contact sensing.

B. Software Architecture

The software architecture is developed in a multithreaded
environment, which includes a state estimation thread com-
bined with robot model computation, a high-level footstep
planning thread, and a low-level WBC thread. Data com-
munication utilizes a custom shared memory library [31].
All programs are implemented in Python while some parts,
including kinematics, dynamics [32], and state estimation,
are precompiled using Numba [33] for acceleration.

C. State Estimation

While Kalman filter has been widely used for legged state
estimation in various forms [34], [35], complementary filter
works robustly as well in practice [36]. The state estimator
makes use of the joint encoders for stance leg kinematics
and the onboard IMU. In specific, we use the IMU solely
to estimate the base orientation and angular rate while we
use both sensors for the base linear position and velocity
estimation. Note that this simple approach comes with some
practical issues, e.g., yaw drift, global position inaccuracy.
However, it works fairly well locally.

D. System Identification

An accurate dynamic model is essential for BRUCE
to perform highly dynamic motions since the controller
heavily relies on it. Meanwhile, for miniature robots, CAD
measurement is less accurate due to the relatively high
ratio of the electronics and accessories. Accordingly, mass-
inertial parameters are obtained by performing a system
identification which is formulated as a least-squares problem
with the joint measurement along some excitation trajectories
[37]. However, ill-conditioned observation matrix can lead to
inaccurate identification. To mitigate this issue, an optimal
excitation trajectory is generated by minimizing the condition
number of the observation matrix based on a parameterized
trajectory with finite fourier series [38], [39], while reg-
ularization towards the nominal values obtained from the
CAD model is also considered. The regularized least-squares
problem is formulated as follows:

min
Ψ

∥Γ(q, q̇, q̈)Ψ− τ∥+ λR(Ψ,Ψ0) , (1)

where q, q̇, q̈, τ are respectively the measured joint positions,
velocities, accelerations, torques, Γ is the state-dependant
observation matrix, and Ψ ∈ R10n denotes the mass-inertial
parameters for an n-link system including mass, first mass
moment, and rotational inertia tensor [37]. As for the regu-
larization term R with weight λ, we accept the formulation
in [40] to make the difference between Ψ and its nominal
value Ψ0 physically consistent but still convex.

IV. FOOTSTEP PLANNING

Using the DCM [18] defined as

ξ := c+ ċ/ω, (2)

the LIPM dynamics can be split into two first-order differ-
entiation equations:

ċ = ω (ξ − c) , (3a)

ξ̇ = ω (ξ − p) , (3b)

where c is the CoM horizontal position, p is the CoP
location on the ground, and ω is the natural frequency of the
pendulum. The dynamics (3a) is stable, i.e., the CoM always
follows the DCM, whereas the dynamics (3b) is unstable,
i.e., the DCM is pushed away by the CoP, which implies
that controlling only the unstable part is enough to generate
stable walking. Notably, the DCM dynamics (3b) can be
analytically solved as an initial value problem with the initial
DCM state ξ0 and the fixed CoP location p0:

ξ(t) = p0 + (ξ0 − p0) e
ωt. (4)

To stabilize the DCM dynamics, it is proposed in [12] to
adapt both the location and timing of the next footstep using
QP. While it is sufficient to only consider the next step to
recover from any viable state in unconstrained environments,
a multistep horizon will enhance the transient behavior
such that faster and smoother response can be achieved in
case of disturbances, e.g., external push or sudden change
in reference. Indeed, a preview of three steps works best
according to our experience in terms of system robustness,
transient behavior, and computational efficiency, as shown in
the supplementary video. Accordingly, we extend the original
framework by planning multiple steps ahead of time while
keeping the problem convex, i.e., still as a QP:

min
pk,bk,η

Ns∑
k=1

∥bk −Rkb
nom
k ∥2Wb

+ ∥lk −Rkl
nom
k ∥2Wl

+ wη

∣∣η − eωTnom ∣∣2 (5a)

s.t. ξ1 = p0 + b0e
−ωt0η, (5b)

ξk = pk−1 + bk−1e
ωTnom

, k = 2, . . . , Ns, (5c)

lmin ≤ R⊤
k lk ≤ lmax, k = 1, . . . , Ns, (5d)

eωTmin ≤ η ≤ eωTmax , (5e)

where bk = ξk − pk is the DCM offset, lk = pk − pk−1

is the step difference, Rk is the planar rotation matrix for
steering at the kth step, T is the step duration, η = eωT is
the corresponding change of variable for convexity, Ns is
the number of steps, and the superscript (·)nom corresponds
to the nominal gait pattern [12]. In specific, the cost (5a)
minimizes the overall tracking errors with different weights
for each term, where the weighted vector norm square is
defined as ∥e∥2W := e⊤We for e ∈ Rn and W ∈ Sn+.
Table I shows the weights for our system. The constraint (5b)
predicts the DCM state at upcoming touchdown with step
duration adapted based on (4) where t0 is the phase elapsed
time, (5c) further predicts the subsequent DCM evolution



TABLE I
FOOTSTEP PLANNING WEIGHT SETUP

Wb Wl wη

(100, 100) (1, 1) 0.1

Note that Wb and Wl are both 2×2 diagonal positive semi-definite matrices
so only the diagonal elements are listed in the order of x and y directions.
In addition, Wb typically needs to be set significantly larger than Wl as it
is essentially responsible for gait viability2.

with step duration fixed for convexity, (5d) ensures each
footstep is physically reachable, and (5e) bounds the adapted
step duration. Note that the walking gait is predefined which
is alternating left- and right-stance phases with no double-
stance phase. We will now discuss the key factors of the
footstep planning.

A. Center of Mass Height

The CoM height cz of LIPM essentially defines its natural
frequency ω:

ω :=
√
g/cz, (6)

where g is the gravitational acceleration. Notably, ω is more
sensitive to cz when cz is small. In view of the miniature
size of BRUCE, ω is thus updated at each control loop but
is still considered constant to keep the problem convex.

Meanwhile, based on (6), it is desirable to have cz as high
as possible so that ω is low and the DCM can diverge at a
slow pace per (4), which benefits the overall system since it
gives the robot more time to respond. In addition, a higher
cz can relieve the knee from bending too much, making the
walking more energy-efficient and natural, which however
gives rise to the knee singularity issue. We plan to solve this
problem in the future but for now we just choose cz so that
singularity can hardly happen in most scenarios.

B. Center of Pressure Location

For bipedal robot locomotion, accurate modulation of the
CoP is limited, not to mention BRUCE with five-DoF legs
and tiny line feet. In addition, BRUCE’s feet are not equipped
with F/T sensors for direct CoP measurement. Accordingly,
we do not specifically sample in time to take into account
variable CoP. We simply consider the center of the stance
foot as the CoP location, which works just fine in practice.

C. Step Duration

The nominal step duration Tnom has a significant effect on
the nominal gait pattern. The numerical simulation results of
LIPM are shown in Fig. 3. We can see that for BRUCE with
a CoM height of only around 0.3 m, its natural frequency
is much higher than that of a regular full-size humanoid
robot per (6), i.e., the DCM diverges faster per (4), and thus
Tnom is typically expected shorter for a reasonable walking
gait. In addition, the robot CoM tends to swing more in

2The gait viability is originally imposed as a hard constraint, which
bounds the DCM offset. However, it can overconstrain the problem along
with the reachability constraint (5d). In practice, the viability constraint is
omitted and instead, it is implicitly executed by setting Wb large to guide
the planned DCM offset as close to the nominal value as possible.

Fig. 3. Nominal gait pattern with different step durations. Note that the
robot is walking to the positive x direction with a fixed average CoM speed
of 0.1 m/s, a fixed CoM height of 0.3 m, and a fixed step width of 0.1 m.

the lateral direction as Tnom increases, which is undesirable
in consideration of the following reasons. First, the real
robot does not behave as the LIPM exactly especially when
Tnom is long and thus the nominal gait pattern becomes
meaningless. One can compare the DCM trajectories of Fig.
3 and Fig. 4. We do observe walking of BRUCE gets less
stable as Tnom increases. Second, even if we try to make
the robot naively mimic the LIPM, the performance is poor
because we cannot fully control the CoM states as we wish
especially when the robot is falling, not to mention the tiny
line feet we have on BRUCE. In the end, we find Tnom of
around 0.22 seconds works best on BRUCE.

When the robot is perturbed and deviating from the
nominal gait pattern, it is able to recover better by adapting
the step duration in addition to the footstep location. We set
bounds to the adapted step duration for behavior regulation
as (5e). The minimum prevents large swing foot acceleration
which mostly depends on the actuator specifications, e.g.,
motor constants, peak torque. The maximum avoids slow
stepping which rarely occurs according to our experience.
Meanwhile, to prevent instantaneous stepping, we stop adapt-
ing if the remaining time of the current step is less than a
threshold of 0.05 seconds.

V. WHOLE-BODY CONTROL

The joint-space equations of motion for a bipedal robot
can be written in the following canonical form:

Hq̈ +Cq̇ +G = S⊤
a τ +

Nc∑
j=1

J⊤
cjfj , (7)

where q is the vector of generalized coordinates, H is the
inertia matrix, C is the vector of centrifugal and Coriolis
terms, G is the gravity vector, Sa is the actuation selection
matrix, τ is the joint torque vector, Jcj and fj are respec-
tively the foot contact Jacobian and contact force at the jth
contact vertex, and Nc is the number of contact vertices.

Given desired operational space acceleration ẍdes
i for the

ith task, the goal of WBC is then to find the instantaneously
required, dynamically consistent q̈, τ , and fj . This can be



done using a weighted WBC scheme, which is formulated
as the following QP:

min
q̈,fj

Nt∑
i=1

∥∥∥Jiq̈ + J̇iq̇ − ẍdes
i

∥∥∥2
Wi

+

Nc∑
j=1

∥fj∥2Wf

+ ∥q̈∥2Wq̈
(8a)

s.t. Sf

(
Hq̈ +Cq̇ +G−

Nc∑
j=1

J⊤
cjfj

)
= 0, (8b)

fj ∈ Cj , j = 1, · · · , Nc, (8c)

where Ji is the ith task Jacobian and Nt is the number of
tasks. As we can see, the ith operational task is set as a QP
cost with priority implicitly being enforced with weight Wi.
In particular, ẍdes

i consists of both feedforward and feedback
terms, which is specified with the form of

ẍdes
i = aref

i +Kp

(
pref
i − pi

)
+Kd

(
vref
i − vi

)
, (9a)

ẍdes
i = αref

i +KpLog
(
R⊤

i R
ref
i

)
+Kd

(
ωref

i − ωi

)
, (9b)

for the linear and angular motions, respectively, where ai,
vi, pi are the linear acceleration, velocity, position while αi,
ωi, Ri are the angular acceleration, velocity, orientation, the
superscript (·)ref corresponds to the reference, and Kp/Kd

is the proportional/derivative (P/D) feedback gain matrix.
Note that the logarithm operator Log : SO(3) → R3 converts
a rotation matrix to its corresponding axis–angle representa-
tion. Table II shows all the task weights and gains for our
system. In addition to the task costs, regularization costs are
added to the decision variables q̈ and fj with small weights
Wq̈ and Wf respectively to ensure the overall QP cost is
strictly positive definite even when the task Jacobians contain
singularities, which avoids potential numerical issues. Let us
now go over the details of the WBC framework.

A. System Dynamics

The consistency of the variables q̈, τ , and fj with the
system dynamics (7) must be strictly enforced. Notably, the
equations can be split into the floating base dynamics and
joint dynamics. To accelerate the QP performance, only the
floating base dynamics are considered as (8b), where Sf is
the base selection matrix. In this manner, variables for τ
can be removed if it is assumed that there is always enough
torque to achieve the generated motion, i.e., no torque limits.
Once the QP is solved with optimal solution q̈∗ and f∗

j , the
corresponding joint torques can be computed as follows:

τ ∗ = Sa

(
Hq̈∗ +Cq̇ +G−

Nc∑
j=1

J⊤
cjf

∗
j

)
. (10)

B. Stance Foot

For BRUCE with line feet, we consider two point contacts
per foot, the toe and heel. The constraint (8c) ensures each
contact force is bounded and lies within the local friction
cone Cj which is approximated by a square pyramid for

TABLE II
WBC TASK WEIGHT AND GAIN SETUP

Task W Kp Kd

Linear Momentum (1, 1, 100) (1, 1, 100) (5, 5, 10)
Angular Momentum (1, 1, 1) / (10, 10, 1)
Torso Orientation (10, 10, 10) (500, 500, 200) (25, 25, 20)
Stance Contact (103, 103, 103) / /
Swing Position (10, 10, 10) (100, 100, 100) (10, 10, 10)
Swing Orientation (/, 1, 1) (/, 50, 300) (/, 10, 50)

Note that W , Kp, Kd are all 3×3 diagonal positive semi-definite matrices
so only the diagonal elements are listed in the order of x, y, and z directions.
The symbol / means the object is not used.

linearity, e.g., on the even ground we have
±1 0 −µ
0 ±1 −µ
0 0 −1
0 0 1

fj ≤


0
0

−fmin

fmax

 , (11)

where µ is the friction coefficient and fmin/fmax is the
minimum/maximum normal force. Note that a positive min-
imum can prevent loose contact, or otherwise one of the feet
might lose contact if the CoM is shifted to the other one.

Moreover, for each contact force constraint, a correspond-
ing zero contact acceleration constraint needs to be specified
to prevent the stance foot from moving:

Jcj q̈ + J̇cj q̇ = 0. (12)

In practice, we treat (12) as one of the task-space objectives,
i.e., a soft constraint, which can generally speed up the QP
and give better numerical stability [7]. Then with sufficient
task weight, it will act as a nullspace projector so that other
tasks will properly respect the nonmoving contact condition.

C. Centroidal Momentum

The control of centroidal momentum is a critical compo-
nent of WBC for bipedal robots, which consists of the linear
momentum l as well as the centroidal angular momentum
(CAM) k about the robot CoM. While the linear part has
a straightforward relationship with the CoM velocity, the
angular part is abstract. Notably, biomechanics studies have
shown that for human walking, the CAM is well regulated
to near zero by the neuro-control system [41]. Accordingly,
the angular momentum task is to damp out excessive CAM:

k̇des = −Kdk. (13)

The linear momentum task is decoupled in the vertical and
horizontal directions. For the vertical direction, we want the
robot CoM to maintain a nominal height above the ground to
match the LIPM in Section IV. For the horizontal direction,
it is simply tracking the velocity command with low priority
and PD gains since the robot movement is mainly realized
by taking steps. Another reason is that our BRUCE robot
has only five DoFs for each leg, which means during single
stance not all the six spatial DoFs can be directly controlled.
We prioritize the CoM height and torso orientation for a good
posture, which generally contributes to the walking stability.
Note that for the momentum tasks, the centroidal momentum
matrix [42] is used as the task Jacobian.



D. Torso Orientation

Controlling the torso orientation is essential for a good
walking posture, e.g., to avoid unwanted torso oscillations
which can largely affect the robot CoM and complicate the
control process. Accordingly, since we also have a small yaw
drift rate, all the three angles are controlled globally.

E. Swing Foot

For a multi-layered control scheme, accurate execution of
the high-level plan is important for the low-level controller.
For our case, the high-level planner determines when and
where to take the next step in an optimal manner, which is
essentially realized by the swing foot task of WBC. Note that
for the foot position, instead of considering some point on the
foot bottom which is sensitive to the ankle joint, we choose to
control the ankle position for simplicity. As a result, the ankle
joint is only responsible for foot orientation. This decoupling
is also beneficial for the tuning process.

1) Trajectory Generation: The swing foot orientation can
be simply set constant relative to the torso. However, recall
that each leg of BRUCE has only five DoFs and thus the
rotation in the foot roll direction is excluded since it has the
least effect for a line foot. In addition, because the robot is
walking blindly with no terrain information, the gain in the
pitch direction is intentionally set low, which can make the
foot adaptive to a certain range of terrains.

The swing foot position trajectory needs to be carefully
designed to adapt the changing footstep location and timing.
In the horizontal direction, when a new step is planned with
optimal solution p∗

1 and T ∗, the trajectory is regenerated
using a fifth-order polynomial to ensure continuity up to
acceleration, with boundary conditions given as follows:

pref
f (t0) = ppre

f (t0), pref
f (T ∗) = p∗

1, (14a)

vref
f (t0) = vpre

f (t0), vref
f (T ∗) = 0, (14b)

aref
f (t0) = apre

f (t0), aref
f (T ∗) = 0, (14c)

where ppre
f (t) is the previously generated trajectory. In the

vertical direction, the swing foot height first increases to a
fixed apex value until a fixed time, and then decreases to
prepare for landing on the ground with a similar trajectory
regeneration method in the horizontal direction. In addition,
due to modeling and state estimation errors, the landing
height of the swing foot needs to be adjusted based on the
stance foot to mitigate the touchdown impact.

2) Inverse Kinematics Compensation: While ID-based
WBCs such as ours are able to provide compliant behaviors
and strong robustness, they heavily depend on the high
quality of the dynamic model which is often difficult to
obtain in practice. In addition, considering the short step
duration for BRUCE, the swing foot acceleration is usually
significant and thus accurate control of the foot movement
is typically hard even with a good system identification.
On the contrary, IK-based approaches only require the robot
kinematic model which is much easier to get. On top of that,
utilizing joint position PD control benefits bipedal systems
due to its modeling error compensation and high updating

frequency [7], [43], e.g., the BEAR actuator runs internal
control loop at 2 kHz which is four times faster than our
WBC. As a result, in addition to the optimal joint torques
(10) from WBC, i.e., think of it as the feedforward term, we
take into account the joint position and velocity references
by solving the swing foot IK, which can greatly enhance the
tracking performance:

τdes = τ∗ + kp
(
qref − q

)
+ kd

(
q̇ref − q̇

)
, (15)

where kp/kd is the P/D feedback gain for each joint.

F. Task Transition

During contact changes, i.e., foot transition from stance to
swing and vice versa, task transition needs to be performed,
e.g., for a stance foot, the stance contact task is activated
while the swing position and orientation tasks are deacti-
vated. This can be handled by simply changing the relative
task weight, e.g., if a task is deactivated, its weight can be
assigned zero or tiny value and we can easily bring it back if
it becomes activated again. Note that foot contact transition
happens instantaneously and thus smooth task transition [44]
is unnecessary for the walking scenario. No chatter of the
joint acceleration is observed either in the simulation or
on the hardware. In addition, the contact force constraint
(8c) needs to be adjusted accordingly as well, e.g., the limit
fmin/fmax should be reduced to zero for a swing foot.

VI. EXPERIMENTAL RESULTS

In this section, an extensive series of simulation and
hardware experiments were conducted to show the capability
of our walking controller. The simulation of BRUCE is
built based on Gazebo [45], an open-source 3D robotics
simulator using the ODE physics engine. The hardware
experiments were conducted fully untethered as introduced
in Section III. The QPs (5) for the footstep planning and (8)
for the WBC are both implemented with optimized Python
code and solved using the off-the-shelf QP solver OSQP
[46], which can achieve an updating frequency of 500 Hz,
sufficient for real-time feedback control. The footage of all
the experiments is available in the supplementary video.

A. Omnidirectional Walking

In this experiment, to verify DCM-based footstep planning
is effective for generating stable walking motion in general,
the robot was commanded and managed to walk omnidirec-
tionally, e.g., forward and backward, left and right, stationary
yaw rotation, as well as any combinations of them. Note that
only a velocity command needs to be specified, e.g., sagittal
and lateral velocity, yaw rate. In addition, due to modeling
error, a velocity calibration is needed as the robot may drift
slightly even with a zero velocity command.

B. Push Recovery

To gauge the overall system robustness in terms of external
disturbance, a push recovery test was conducted. In the
simulation, BRUCE was commanded to walk with a forward
velocity of 0.3 m/s. At t around 2, 4, 6, 8 seconds, a constant



(a) Robot Trajectories

(b) Optimal Step Duration

Fig. 4. Simulation results of push recovery. (a) Position trajectories of
robot CoM, DCM, left and right feet. Note that the robot was locomoting to
the positive x direction with a forward velocity command of 0.3 m/s. (b)
Time series of the optimal step duration suggested by the footstep planner.
The amber and green shaded areas indicate the left- and right-stance phases,
respectively. The gray areas indicate the duration of the external pushes.

external force with a duration of 0.1 s and a magnitude of
12 N (BRUCE has a weight of only 5.2 kg) was exerted on
its torso in the left, right, forward, and backward direction,
respectively. The simulation results are shown in Fig. 4.
As we can see, BRUCE was able to recover within the
next few steps by adapting both footstep location and step
duration. The push recovery test was also conducted on
the real hardware. We pushed BRUCE on different parts,
e.g., torso and leg, in various directions, e.g., sagittal and
lateral, at random times with random durations, and BRUCE
managed to survive. An example clip is shown in Fig. 1.

C. Irregular Terrains

In this experiment, to gauge the overall system robustness
in terms of terrain uncertainty, BRUCE was challenged to
a series of irregular terrains, as shown in Fig. 5. Note that
BRUCE was walking blindly without any terrain information.

1) Uneven Terrain: In the simulation, BRUCE was com-
manded to walk with a forward velocity of 0.3 m/s and on
the ground there were random wood slats with different sizes
but a fixed height of 1 cm (BRUCE has a CoM height of
only 30 cm). Thanks to the robust footstep planning and
compliance of the WBC, BRUCE successfully conquered
this uneven terrain. In the real world, BRUCE was also able
to walk with small ground height variations.

2) Soft Terrain: In this scenario, BRUCE was stepping
on a yoga mat in the real world. This kind of soft terrain
is challenging as it is difficult for the stance foot to remain
stationary due to the surface compliance, which can easily
cause oscillations and even instability of the system. As
we can see in the supplementary video, the stance leg (in
particular the ankle) was constantly adapting in order to keep
the balance and our walking controller was able to stabilize
the system on this soft terrain.

3) Sliding Terrain: In this scenario, BRUCE was stepping
on foam boards which can easily slide on the ground.

(a) (b)

(c) (d)

Fig. 5. Snapshots of BRUCE walking on irregular terrains. (a) Uneven
terrain. (b) Height variation. (c) Soft terrain. (d) Sliding terrain.

The sliding can also mess up the state estimation which
assumes fixed contact location. However, as we can see in
the supplementary video, our walking controller could still
stabilize the system with an adapted gait.

VII. CONCLUSION AND FUTURE WORK

In this paper, a two-level dynamic walking controller was
presented. Specifically, the DCM-based high-level footstep
planner is solving a TO with multiple steps being planned
in advance, which optimally determines the footstep location
and timing. The ID-based low-level WBC is finding the in-
stantaneously required, dynamically consistent joint torques
to best realize the task-space behaviors. Both problems can
be transcribed into small-scale QPs which can be solved
efficiently with guaranteed optimality for real-time appli-
cations. Additionally, detailed implementation guidance of
the control framework is provided on BRUCE, a miniature
bipedal robot with proprioceptive actuation. To the best of
our knowledge, this is the first fully-untethered miniature
bipedal robot which can achieve robust dynamic walking
using this framework. We believe our practical experience
and insightful discussion will benefit the robotics community.
Lastly, an extensive series of simulation and hardware walk-
ing experiments were carried out, including omnidirectional
walking, push recovery, and irregular terrains, which demon-
strate the strong robustness of the approach in the presence
of various disturbances and uncertainties.

In the future, an upgraded upper body with arms will be
added on BRUCE for more capabilities, e.g., arm-assisted
disturbance rejection, standing up on its own, and loco-
manipulation. Other dynamic behaviors including running
and jumping are under exploration as well.

ACKNOWLEDGMENT

This work was partially supported by the Office of Naval
Research through grant N00014-15-1-2064.



REFERENCES

[1] S. Kajita et al., “Biped walking stabilization based on linear inverted
pendulum tracking,” in IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pp. 4489–4496, 2010.

[2] G. Wiedebach et al., “Walking on partial footholds including line
contacts with the humanoid robot Atlas,” in IEEE-RAS International
Conference on Humanoid Robots, pp. 1312–1319, 2016.

[3] M. A. Hopkins, D. W. Hong, and A. Leonessa, “Humanoid locomotion
on uneven terrain using the time-varying divergent component of
motion,” in IEEE-RAS International Conference on Humanoid Robots,
pp. 266–272, 2014.

[4] M. H. Raibert, H. B. Brown Jr, and M. Chepponis, “Experiments in
balance with a 3D one-legged hopping machine,” The International
Journal of Robotics Research, vol. 3, no. 2, pp. 75–92, 1984.

[5] J. Koenemann et al., “Whole-body model-predictive control applied
to the HRP-2 humanoid,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3346–3351, 2015.

[6] M. Neunert et al., “Whole-body nonlinear model predictive control
through contacts for quadrupeds,” IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 1458–1465, 2018.

[7] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson, “Optimization
based full body control for the Atlas robot,” in IEEE-RAS International
Conference on Humanoid Robots, pp. 120–127, 2014.

[8] S. Feng, X. Xinjilefu, C. G. Atkeson, and J. Kim, “Robust dynamic
walking using online foot step optimization,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 5373–5378,
2016.

[9] E. Daneshmand, M. Khadiv, F. Grimminger, and L. Righetti, “Variable
horizon MPC with swing foot dynamics for bipedal walking control,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2349–2356,
2021.

[10] S. Faraji, S. Pouya, C. G. Atkeson, and A. J. Ijspeert, “Versatile and
robust 3D walking with a simulated humanoid robot (Atlas): A model
predictive control approach,” in IEEE International Conference on
Robotics and Automation, pp. 1943–1950, 2014.

[11] T. Koolen et al., “Design of a momentum-based control framework
and application to the humanoid robot Atlas,” International Journal
of Humanoid Robotics, vol. 13, no. 1, p. 1650007, 2016.

[12] M. Khadiv, A. Herzog, S. A. A. Moosavian, and L. Righetti, “Step
timing adjustment: A step toward generating robust gaits,” in IEEE-
RAS International Conference on Humanoid Robots, pp. 35–42, 2016.

[13] T. Apgar, P. Clary, K. Green, A. Fern, and J. W. Hurst, “Fast online
trajectory optimization for the bipedal robot Cassie,” in Robotics:
Science and Systems, vol. 101, p. 14, 2018.

[14] M. Khadiv, A. Herzog, S. A. A. Moosavian, and L. Righetti, “Walking
control based on step timing adaptation,” IEEE Transactions on
Robotics, vol. 36, no. 3, pp. 629–643, 2020.

[15] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The
3D linear inverted pendulum mode: a simple modeling for a biped
walking pattern generation,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 239–246, 2001.

[16] H. Diedam, D. Dimitrov, P.-B. Wieber, K. Mombaur, and M. Diehl,
“Online walking gait generation with adaptive foot positioning through
linear model predictive control,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pp. 1121–1126, 2008.

[17] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and
M. Diehl, “Online walking motion generation with automatic footstep
placement,” Advanced Robotics, vol. 24, no. 5-6, pp. 719–737, 2010.

[18] T. Takenaka, T. Matsumoto, and T. Yoshiike, “Real time motion
generation and control for biped robot -1st report: Walking gait pattern
generation-,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1084–1091, 2009.

[19] J. Englsberger, C. Ott, and A. Albu-Schäffer, “Three-dimensional
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